Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways.
نویسندگان
چکیده
We have recently demonstrated the direct involvement of the death receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell (RTC) death. Reactive oxygen species are thought to be a major cause of cellular damage in such injury. The aim of this study was to examine the mechanism through which antioxidants ameliorate cisplatin-induced RTC death, with special emphasis on death receptor-mediated apoptotic pathways. Cisplatin was added to cultures of normal rat kidney (NRK52E) cells or injected in rats. NRK52E cells and rats were also treated with dimethylthiourea (DMTU), a hydroxyl radical scavenger. We then examined the mRNA levels of death ligands and receptors, caspase-8 activity, cell viability, cell death, renal function, and histological alterations. RT-PCR indicated cisplatin-induced upregulation of Fas, Fas ligand, and TNF-alpha mRNAs and complete inhibition by DMTU in vitro and in vivo. Cisplatin increased caspase-8 activity of NRK52E cells, and DMTU prevented such activation. Exposure to cisplatin reduced viability of NRK52E cells, examined by WST-1 assay, and increased apoptosis and necrosis of the cells, examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and fluorescence-activated cell sorter analysis. DMTU abrogated cisplatin-induced changes in cell viability and apoptosis and/or necrosis. Cisplatin-induced renal dysfunction and histological damage were also prevented by DMTU. DMTU did not hinder cisplatin incorporation into RTCs. Our results suggest that antioxidants can ameliorate cisplatin-induced acute renal failure through inactivation of the death receptor-mediated apoptotic pathways.
منابع مشابه
Resveratrol attenuates acute kidney injury by inhibiting death receptor-mediated apoptotic pathways in a cisplatin-induced rat model
Acute kidney injury is a clinical syndrome characterized by a loss of renal function and acute tubular necrosis. Resveratrol exerts a wide range of pharmacological effects based on its anti‑inflammatory, antioxidant and cytoprotective properties. The present study aimed to evaluate whether resveratrol attenuates acute kidney injury in a cisplatin‑induced rat model and to investigate the potenti...
متن کاملSumatriptan ameliorates renal injury induced by cisplatin in mice
Objective(s): Cisplatin (Cis) is an anticancer compound, which is used for the treatment of various cancers. Sumatriptan (Suma) is a selective agonist of 5-hydroxytryptamine 1B/1D (5HT1B/1D) receptor, which is prescribed for the management of migraine. It is well-established that Suma has anti-inflammatory and antioxidant properties. We have explored the protective effe...
متن کاملMitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice
Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major act...
متن کاملRestoration of CREB function ameliorates cisplatin cytotoxicity in renal tubular cells.
We have shown that mouse proximal tubule cells (TKPTS) survive H(2)O(2) stress by activating the cAMP-responsive element binding protein (CREB)-mediated transcription via the canonical EGFR-Ras/ERK pathway. By contrast, cisplatin activates EGFR/Ras/ERK signaling in TKPTS cells yet promotes cell death rather than survival. We now demonstrate that the cisplatin-induced activated EGFR/Ras/ERK sign...
متن کاملRenoprotective effects of antioxidants against cisplatin nephrotoxicity
Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1) Decrease of cisplatin uptake by renal cell, 2) Inhibition of cisplatin metabolism, 3) Blocking...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003